

Wi-Fi HaLow Mesh Networking: Relay + Roaming Operation Guide

Executive Summary

This comprehensive guide provides step-by-step instructions for implementing Wi-Fi HaLow (802.11ah) mesh networking using AirLink modules. The solution enables advanced relay functionality, seamless roaming capabilities, and multi-hop mesh topology for extended coverage and robust connectivity.

Introduction to Wi-Fi HaLow Technology

Wi-Fi HaLow (802.11ah) is a low-power, long-range wireless communication standard operating in the Sub-1GHz frequency band. This technology is specifically designed for IoT applications requiring extended range, low power consumption, and reliable connectivity through obstacles.

Key Advantages

- Extended Range: Up to 1km in open space
- Low Power Consumption: Ideal for battery-powered devices

- **Better Penetration**: Sub-1GHz frequencies penetrate walls and obstacles effectively
- Scalable: Supports thousands of connected devices

Network Architecture Overview

Topology Structure

The Wi-Fi HaLow mesh network implements a hierarchical relay structure that extends coverage through multiple hops:

```
[Main Access Point]

[Relay Node 1] (AP+STA Mode)

[Relay Node 2] (AP+STA Mode)

[End Device/Station]
```

Component Roles

- Main AP: Primary access point providing internet connectivity
- **Relay Nodes**: Intermediate nodes operating in AP+STA mode for signal extension
- End Devices: Client stations connecting to the network

Configuration Guide

1. Main Access Point Setup

The main AP serves as the network's root node and internet gateway.

Configuration Commands:

```
AT+MODE=ap # Set to Access Point mode
```


AT+SSID=ah_main_ap	# Set SSID (max 32 characters)
AT+KEYMGMT=none	# Disable encryption (or WPA-PSK for security)
AT+CHAN_LIST=9080,9160,9240	# Set frequencies (908MHz, 916MHz, 924MHz)
AT+BSS_BW=8	# Set 8MHz bandwidth

Purpose: Establishes the primary access point for the mesh network foundation.

2. Relay Node Configuration

Relay nodes extend network coverage by simultaneously connecting upstream and serving downstream devices.

Configuration Commands:

AT+MODE=apsta	# Enable dual STA+AP functionality
AT+R_SSID=ah_main_ap	# Connect to upstream AP
AT+SSID=ah_relay1	# Broadcast SSID for downstream devices
AT+KEYMGMT=none	# Security configuration
AT+CHAN_LIST=9080,9160,9240	# Match upstream AP frequencies
AT+BSS_BW=8	# Match upstream AP bandwidth

Key Features:

- Dual-mode operation (Station + Access Point)
- Transparent data forwarding
- Automatic upstream connection management

3. End Device Setup

End devices connect to the nearest available access point in the mesh network.

Configuration Commands:

AT+MODE=sta

AT+SSID=ah_relay1 # Connect to nearest relay or main AP

AT+KEYMGMT=none

Roaming Implementation

Enable Roaming Functionality

Activate roaming on all client devices (including relay nodes in STA mode):

AT+ROAM=1

SSID Strategy for Seamless Roaming

Option 1: Exact Match Method

- All access points use identical SSID: ah_mesh_ap
- Devices automatically connect to strongest signal
- Simplest implementation

Option 2: Fuzzy Match Method

- Prefix-based naming: Common string (>8 chars) + 3-digit ID
- **Example**: HUGE_IC_AH001, HUGE_IC_AH002, HUGE_IC_AH003
- STA Configuration: Match any one AP SSID for automatic roaming
- Requirement: Total SSID length must exceed 8 characters

Advanced Configuration Options

Performance Optimization

Bandwidth Configuration:

AT+BSS_BW=4 # Options: 1/2/4/8 MHz

Channel Management:

AT+CHAN_LIST=9080,9160,9240 # Specify available channels

Power Control:

AT+TXPOWER=20 # Adjust transmission power (dBm)

Network Monitoring

Signal Strength Monitoring:

AT+RSSI? # Check received signal strength

Connection Status:

AT+CONN_STATE # Verify connection status

Implementation Benefits

Technical Advantages

- Multi-hop Extension: Extends range without additional mesh protocols
- Intelligent Roaming: Built-in handoff logic for seamless connectivity
- Sub-1GHz Operation: Superior propagation characteristics
- **Power Efficiency**: Optimized for battery-powered applications

Operational Benefits

- Easy Deployment: Simple AT command configuration
- Scalable Architecture: Add nodes as needed
- **Robust Connectivity**: Automatic failover and recovery
- **Cost-effective**: Uses standard Wi-Fi infrastructure

Application Scenarios

Smart Agriculture

- **Greenhouse Monitoring**: Temperature, humidity, soil sensors
- Field Management: Crop monitoring across large areas
- Irrigation Control: Remote valve and pump management

Industrial Automation

- Factory Floor: Machine status monitoring
- Warehouse Management: Inventory tracking systems
- **Process Control**: Remote sensor networks

Infrastructure Monitoring

- Remote Cameras: Security and surveillance applications
- Environmental Sensors: Air quality, weather monitoring
- Asset Tracking: Equipment and vehicle location

Smart City Applications

- Street Lighting: Intelligent lighting control
- Parking Management: Space availability monitoring
- **Public Safety**: Emergency alert systems

Troubleshooting Guide

Common Issues and Solutions

Connection Problems:

- 1. Verify SSID matching between devices
- 2. Check signal strength with AT+RSSI?
- 3. Confirm channel availability

Roaming Issues:

- 1. Ensure AT+ROAM=1 is enabled on all client devices
- 2. Verify overlapping coverage areas
- 3. Check SSID naming consistency

Performance Optimization:

1. Adjust AT+TXPOWER for optimal range vs. power consumption

- 2. Select appropriate AT+BSS_BW for throughput requirements
- 3. Use AT+CHAN_LIST to avoid interference

Best Practices

Network Design

- Position relay nodes for optimal coverage overlap
- Maintain signal strength above -70 dBm for reliable operation
- Plan for redundant paths in critical applications

Security Considerations

- Implement WPA2/WPA3 security when required
- Use network segmentation for sensitive applications
- Regular firmware updates for security patches

Maintenance

- Monitor signal strength regularly
- Update device configurations as network grows
- Document network topology for troubleshooting

Technical Reference

AT Command Summary

Command	Purpose	Example
AT+MODE	Set device operation mode	AT+MODE=apsta
AT+SSID	Configure broadcast SSID	AT+SSID=ah_mesh_ap
AT+R_SSID	Set upstream connection SSID	AT+R_SSID=ah_main_ap
AT+ROAM	Enable roaming functionality	AT+ROAM=1

Command	Purpose	Example
AT+CHAN_LIST	Set frequency list	AT+CHAN_LIST=9080,9160,9240
AT+FREQ_RANGE	Set frequency range	AT+FREQ_RANGE=9080,9240
AT+TXPOWER	Configure transmission power	AT+TXPOWER=20

Documentation References

- AH Module AT Command Development Guide, v3.0
- IEEE 802.11ah Standard Specification
- AirLink/Taixin Module Technical Manual

Conclusion

Wi-Fi HaLow mesh networking with relay and roaming capabilities provides a robust, scalable solution for IoT applications requiring extended range and reliable connectivity. The simple AT command interface makes deployment straightforward while maintaining enterprise-grade functionality.

For additional support or advanced configurations, please consult the official documentation or contact technical support.

Document Version: 2.0 Last Updated: July 2025